
www.manaraa.com

DOCUMENT RESUME

ED 465 799 TM 034 185

AUTHOR Capraro, Robert M.; Kulm, Gerald; Capraro, Mary Margaret
TITLE Investigating the Complexity of Middle Grade Students'

Understandings of Mathematical Constructs: An Example from
Graphic Representation.

PUB DATE 2002-04-00
NOTE 34p.; Paper presented at the Annual Meeting of the American

Educational Research Association (New Orleans, LA, April
1-5, 2002). Some text and tables may not reproduce
adequately. Supported by the Curtis D. Robert Endowment.

PUB TYPE Reports Research (143) -- Speeches/Meeting Papers (150)
EDRS PRICE MF01/PCO2 Plus Postage.
DESCRIPTORS *Comprehension; Factor Analysis; *Knowledge Level;

*Mathematical Concepts; *Middle School Students; Middle
Schools; Regression (Statistics); Skill Development;
*Structural Equation Models; Student Evaluation

IDENTIFIERS *Graphic Representation

ABSTRACT
This study explored a model for students development of the

understandings and skills that are involved in being able to construct
graphical representations of data and to interpret these graphs. The study
examined four components of prior understanding required for graphic
representation that were adapted from a learning map from the Atlas of
Science Literacy (American Association for the Advancement of Science, 2001).
The components involved knowledge about: (1) coordinate relationships; (2)

graphs showing a variety of relationships; (3) reading simple tables; and (4)
graphic display. Complete data from 82 sixth graders from the classes of 3
teachers were collected and analyzed using multiple regression, factor
analysis, and structural equation modeling (SEM) to examine the nature and
alignment of assessment items that could be used to measure these components
of prior knowledge. The results indicate that the SEM models reflect
significant fits with the Atlas map. While further research with a larger
sample will be needed to examine the relationships among the four components
and with the target learning goal for graphic representation, the SEM
analysis appears to be a promising approach for modeling the construction of
student knowledge in specific content areas of mathematics. Six appendixes
contain some assessment items and student responses. (Contains 38
references.) (Author/SLD)

Reproductions supplied by EDRS are the best that can be made
from the original document.



www.manaraa.com

Investigating Mathematical Complexity I

Running head: INVESTIGATING MATHEMATICAL COMPLEXITIES

PERMISSION TO REPRODUCE AND
DISSEMINATE THIS MATERIAL HAS

BEEN GRANTED BY

. C 6.0recio

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)

1

U.S. DEPARTMENT OF EDUCATION
Office of Educational Research and Improvement

EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

15/This document has been reproduced as
received from the person or organization
originating it.

0 Minor changes have been made to
improve reproduction quality.

° Points of view or opinions stated in this
document do not necessarily represent
official OERI position or policy.

Investigating the Complexity of Middle Grade Students' Understandings of

Mathematical Constructs: An Example from Graphic Representation

Robert M. Capraro Gerald Kulm

Mary Margaret Capraro

Texas A&M University

KEY WORDS: "MATHEMATICS UNDERSTANDING", "MODELS OF

LEARNING", "GRAPHIC REPRESENTATION"

Authors' Note

Inquires concerning this paper can be addressed to the authors at College of Education, Texas
A&M University, 4232 TAMU, College Station, TX, 77843-4232, (979) 845-8007.

This work is partially supported by Professor Kulm's Curtis D. Robert Endowment Chair funds,
which we gratefully acknowledge. We also appreciate the contributions of sixth grade
mathematics teachers Elizabeth Hastings and Jane Rivers, as well as the administrators and
students at Oakwood Intermediate.

Paper presented at the Annual Meeting of the American Educational Research Association, April
1-5, 2002, New Orleans, LA.

2
BEST COPYAVAg



www.manaraa.com

Investigating Mathematical Complexity 2

Abstract

This study explored a model for students' development of the understandings and

skills that are involved in being able to construct graphical representations of data and to

interpret these graphs. Specifically, the study examined four components of prior

understanding required for graphic representation that were adapted from a learning map

from the Atlas of Science Literacy (AAAS, 2001). The components involved knowledge

about: coordinate relationships, graphs showing a variety of relationships, reading simple

tables, and graphic display.

Complete data from 82 sixth graders from the classes of three teachers were

collected and analyzed using multiple regression, factor analysis, and structural equation

modeling (SEM) to examine the nature and alignment of assessment items that could be

used to measure these components of prior knowledge. The results indicate that the SEM

models reflect significant fits with the Atlas map. While further research with a larger

sample will be needed to examine the relationships among the four components and with

the target learning goal for graphic representation, the SEM analysis appears to be a

promising approach for modeling the construction of student knowledge in specific

content areas of mathematics.
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Investigating the Complexity of Middle Grade Students' Understandings of

Mathematical Constructs: An Example from Graphic Representation

This paper addresses the challenge of describing students' development of

important mathematics concepts and skills. In this study we focus on the alignment of

learning goals and achievement, with special attention to the prior knowledge and

conceptions that must be present or developed. We seek an understanding of the relative

importance of these understandings in modeling and predicting trajectories of

achievement. Specifically, the study explores a model for students' development of the

understandings and skills that are involved in being able to construct graphical

representations of data and to interpret these graphs.

Theoretical Framework

Teaching and learning mathematics with understanding involves some

fundamental forms of mental activity: (1) constructing relationships, (2) extending and

applying knowledge, (3) reflecting about experiences, (4) articulating what one knows,

and (5) making knowledge one's own (Carpenter & Lehrer, 1999). Furthermore, the

specific classroom activities and teaching strategies ihat support these mental activities,

include appropriate tasks, representational tools, and normative practices that engage

students in structuring and applying their knowledge and in reflection and encourage

articulation about tasks and about their own mental activities. Fakness and equity is an

especially important issue in making learning and understanding available for all

students. There may be differential effects of this type of instruction for some students

(Secada & Berman, 1999).

4
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There are specific instructional and learning factors that produce cognitive change

and understanding of mathematics concepts and procedures in middle grades students. In

particular, activities that (1) build on students' prior ideas about mathematics and (2)

promote student thinking and reasoning about mathematics concepts are important for

building understanding. Research on these variables supports their importance in

mathematics teaching and learning that is designed to lead to conceptual change (Posner,

Strike, Hewson, & Gertzog; 1982).

Building on Student Ideas about Mathematics: The importance of taking account of

students' ideas has long been recognized. Ausubel (1968) noted that "the most important

single factor influencing learning is what the learner already knows." If students have

narrow conceptions and representations of ideas or procedures that do not extend to other

situations, their subsequent work can result in misconceptions (Fischbein, Deri, Nello, &

Marino, 1985; Bell, Greer, Grimison, & Mangan, 1989). For example, a misconception

common among junior high as well as college students is the interpretation of a graph as

a picture (Ben-Zvi & Arcavi, 2001; Berg & Smith, 1994; Elby, 2000).

Teachers who understand students' knowledge and thinking are able to use this

information to improve the quality of their instruction (Carpenter, Franke, Jacobs,

Fennema, & Empson, 1998; Cobb et al., 1991). Several strategies have been found that

are effective in identifying and addressing prior knowledge. For example, a discussion of

how students perceive the difference between two solutions to an exercise or problem can

provide insights into student understanding (Cobb, 1988). Also, an assessment of how

students extend procedures to other contexts and situations can reveal misconceptions or

lack of understanding (Hiebert & Wearne, 1986). Both of these strategies apply to a wide

5
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range of mathematical ideas and procedures. Unless instruction attends to students' prior

knowledge and teachers are alerted to it, the sequence of activities might be inappropriate

(Mack, 1990).

Graphic Representation Skills and Concepts: Results from the National Assessment of

Educational Progress (NAEP) have not changed much from 20 years ago when it was

reported that students in grades 4 and 8 generally do well in simply reading information

from graphs, but perform poorly when asked to combine two or more pieces of

information to answer a question (Bestgen, 1980). Performance on data extraction tasks

depends on the type of display used, the person's experience, and the complexity of the

graphical display (Meyer, Shinar, & Leiser; 1997). One of the early attempts to examine

the effect of prior knowledge on comprehending graphs was to apply a schema-theoretic

perspective. Mathematics and reading achievement, along with three subtests of prior

knowledge (Topic, Mathematical Content, and Graphical Form) were used as predictors

of graphical comprehension. For 7th graders, mathematics and reading achievement were

the best predictors; the knowledge of mathematical content of graphs added somewhat;

and prior knowledge of topic and graphical form were poor predictors for grade 7

(Curcio, 1987).

Little is known about how children go about constructing and analyzing data and

drawing inferences from it. Lehrer and Romberg (1996) used a classroom-based "design

experiment" to explore fifth graders' data modeling processes. The authors concluded

that students need opportunities to construct and develop ideas and skills in data

modeling. At the same time, it seems important to develop models for how these skills

and concepts develop.

6
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The present exploratory study considers questions about how middle school

students develop understandings and skills necessary for constructing and interpreting

graphic representations. This paper reports initial progress toward developing a model for

how students' graphic representation skills and concepts develop in complexity. The

following questions were addressed:

1. What prior knowledge and skills can be used to predict sixth graders'

knowledge about graphic representation and interpretation?

2. How can the development of sixth graders' knowledge and skills in graphic

representation and interpretation be modeled?

Methods

Four sixth grade teachers in a suburban middle school agreed that the curriculum

Connected Mathematics (CMP) would address their desire to provide better instruction,

especially for students who had not achieved well on the state mathematics assessment.

Three of the teachers (n =3) and their students in five classes (n =140) agreed to

participate in the data collection part of the project, beginning in the Fall, 2000. The

agreed purpose is to study mathematics teaching and learning, not to compare individual

teachers. Within each class, 3 students (n =15) were identified for closer study with the

intent of developing specific trajectories and mental models of their learning of specific

mathematics concepts. These students will be followed for 3 years, beginning in grade 6.

In each year, teachers will be added to the study.

The study simultaneously employs two designs: (1) Case studies of instructional

implementation of CMP materials by the three middle grades mathematics classroom

teachers and individual students, and (2) Study of students' performance and achievement

7
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on specific mathematical learning goals (TEKS standards) as it relates to effectiveness in

classroom implementation. This report will focus on the second of these by analyzing

quantitative student achievement data.

An example of a learning model was developed to reflect conceptualization of

students' learning. The model was adapted from the Graphic Representation "strand map"

of Project 2061's Atlas of Science Literacy (AAAS, 2001). The map displays the ideas

and skills that contribute to an understanding of the topic of graphic representation and

shows how the ideas and skills relate to each other and how they progress from one grade

level to the next.

INSERT FIGURE 1 HERE

Design and Data Sources. Student learning and achievement of graphic representation

concepts and skills were assessed through multiple methods and strategies including unit

tests, performance tasks from the Balanced Assessment (2000), interviews with selected

students, a spring Benchmark Test (TAAS pretest), and end of year Texas Assessment of

Acadeinic Skills (TAAS) mathematics test, which is the state assessment. For the

analyses reported here, specific items on Graphic Representation were used from (a) the

spring Benchmark Test, (b) an open-ended Balanced Assessment task (Vet Club), and (c)

the 2001 TAAS sixth grade mathematics test. See Appendixes A through D for examples

of the spring Benchmark Test and Appendix E and F for the Vet Club task and a sample

of a student response.

The data were analyzed using a three-phased approach. First, a multiple

regression analysis was used to determine how well the target graphic representation



www.manaraa.com

Investigating Mathematical Complexity 8

learning goal was predicted by prior knowledge. Next, a factor analysis was conducted

using the four prior knowledge components as a priori factors, in order to confirm that

these components were indeed appropriate to proceed with the final Structural Equation

Modeling (SEM) analysis. Finally, based on the supportive evidence from the first two

analyses, an SEM analysis was carried out to examine the fit of the theoretical and

measured models of students' graphic representation knowledge and skill development.

MultipleRegression. We performed a multiple regression analysis with students'

performance of graphic representation as the dependent variable and the measured

variables for each of the objectives specified in the theoretical map (See Figure 1) as

independent variables.

Factor Analysis. A factor analysis was conducted to determine if the theoretical

constructs were evident in the data prior to submitting the data to further analyses in

SEM. The number of factors was set to four, a priori, in accordance with theory

articulated in Figure 1. From the correlation matrix the data were considered to be too

highly correlated to meet of the case for orthogonal rotation, hence, a promax rotation

with Kaiser normalization was used. Thompson (1997) argued that when obliquely

rotating data it is important to interpret both the factor pattern matrix and the factor

structure matrix to ascertain the overall structure. Although this is true and necessary, we

only considered the rotated structure matrix because we were following the analysis with

SEM for additional rigor.

Structural Equation Modeling. It was important to determine if the theoretical learning

map (Figure 1) is a true model of student learning of graphic representation. A structural

equation model (SEM) was used to investigate this correspondence (Klem, 2000). As

9
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Thompson (1991) noted, "Multivariate methods best honor the reality to which the

researcher is purportedly trying to generalize." (p. 80) Canonical correlation analysis

(CCA) has been found to subsume all other parametric analyses such as t-tests, ANOVA,

regression, and X2 (Frederick, 1999; Knapp, 1978). In seminal work Joreskog and

Sörbom (1979) indicated that SEM is an even more general case of the GLM, subsuming

all other cases of the as special cases (Capraro & Capraro, 2001; Knapp, 1978;

Thompson, 1991). SEM has been termed "the single most important contribution of

statistics to the social and behavioral sciences during the past twenty years" (Lomax,

1989, p. 171). Similarly, Stevens (1996) argued that SEM is ". . . one of the most

important advances in quantitative methodology in many years" (p. 415).

Because SEM subsumes all other parametric statistical analyses it provides some

interesting options for the researcher. First, all other analyses (e.g., t-tests, ANOVA,

regression, MANOVA, and CCA) can be conducted as special cases in SEM. This is of

conceptual interest but is often not a practical shortcut or an elegant solution that

efficiently answers the research question at hand. However, when the research questions

deal with understanding the underlying structure (EFA) of a set of items or in confirming

a theory from a set of data (CFA) SEM can provide truly elegant and unique solutions

(Stevens, 1996).

In SEM, the models include unobservable variables identified as latent constructs,

defmed by observed variables, which by theory fit the construct(s). Measurement error,

reflecting score reliability is also typically estimated as a unique and an essential part of

SEM analyses (Joreskog, 1969, 1970, 1973, 1977; Joreskog, & Goldberger, 1975;

Joreskog, & SOrbom, 1978). SEM's major advantage over other analytic methods is that

1
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it accounts for measurement error. A major distinguishing feature of SEM is that score

reliabilities are estimated as part of structural modeling. Thus, structural models test both

substantive hypothesis and measurement models. This may not be obvious to many

applied researchers, because rather than estimating reliabilities directly, SEM estimates

error variances instead. In the present study, the data from measured variables are used to

confirm hypothesized relationships among learning map constructs as shown in Figure 1

account for student achievement.

In the SEM analysis, several competing models are considered in an attempt to

achieve an identified model. The data was analyzed using AMOS 4.0, which provides

several fit statistics. The most general measure of overall fit is the Chi-square statistic

which is sensitive to sample size. Other statistics that are considered in obtaining the best

model include the RMSEA index, Modification Indices (MI), Normed Fit Index (NFI),

Critical Ratio (CR) and the Wald Statistic (Thompson, 2000).

Results

The overall achievement results at the end of the first year, as measured by the

TAAS mathematics test were very good in that 222 of 225 students (99%) passed the test.

Of special note was only one minority and/or second language students failed, compared

with 30 - 35% failure rate in previous years.

To explore the extent to which student prior knowledge predicted performance on

Graphic Representation, a linear regression model was applied, using fall semester

measures of understanding and working with data as predictors of the TAAS Graphic

Representation objective. As shown in Table 1, this analysis yielded an R2 of 46.5%

1 1
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indicating a modest development of student understanding half-way through the first

year.

INSERT TABLE 1 HERE

The results of the Component Factor Analysis shown in Table 2 seemed to

support the underlying construct, since the factor structure coefficients supported the

overall understanding of student learning as depicted in Figure 1. The number of subjects

with complete data was too small to be confident that there cannot be other possible

interpretations that can fit the data. Nonetheless, it appears that the four prior knowledge

components in the theoretical model (Figure 1) were measured by the items that we

identified. The four prior knowledge factors accounted for 48% of the variance in

graphic representation knowledge.

INSERT TABLE 2 HERE

In order to explore the complexities involved in students' understanding and

skills, four separate SEM models were developed, each one representing one of the four

components of the Graphic Representation map as a focus.

SEM Results

A critical question is how to determine whether an a priori model fits the data or

how to compare the relative fit of the model. Because of relatively strong theory, no

competing models were selected. The Cronbach's (1951) alpha coefficient for Vet Club

was .74, and the Spring Benchmark was .82. Whereas tests of statistical significance and

indexes of fit aid in the evaluation of the fit of a model, there is ultimately a degree of

subjectivity and professional judgement in the selection of a model. Here we emphasize

/ 2
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the Tucker-Lewis index (TLI), normed fit index (NFI), comparative fit index (CFI), and

the root mean square error of approximation (RMSEA) index to evaluate goodness of fit,

but also to present the chi-squared test statistic. Although there are no exact standards for

which fit indexes to use or their values, typical guidelines are that the TLI, CFI, and NFI

should be greater than .9 and the RMSEA should be less than .05. The reason for

selecting TLI and RMSEA is because they account for parsimony. Higher Indexes for

TLI and RMSEA would indicate a more parsimonious model as illustrated by the ratio

between the degrees of freedom in the Target model as compared to the Null model. TLI

was used despite it being the accepted index for nested models even though these models

are not nested because of its added information regarding parsimony (Hu & Bent ler,

1995).

INSERT TABLE 3 HERE

Model 1 (See Figure 2). The construct of Graphic Display was assessed using the

SEM model. Vet Club items 6,7,8, 9, and Spring Benchmark items 4 and 10 were used

as the measured variables. The fit indexes (NFI, TLI, CFI) were all in acceptable ranges

indicating that data fit the theoretical model (See Table 3).

INSERT FIGURE 2 HERE

Model 2 (See Figure 3). Reading Simple Graphs was assessed using the SEM

model and the measured variables from Vet Club 1 and 2, and Spring Benchmarks 20, 23,

40, and 47. The RMSEA of .077 indicated a moderate fit. Application in research

indicated that values of .05 or less indicate a close fit to the theory in relation to degrees

J.3
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of freedom. Values bounded by .05 and .08 indicate a reasonable error of approximation

and values greater than this indicate a poor model fit with respect to degrees of freedom

(cf. Browne & Cudeck, 1993). The NFI, TLI, CFI, were .984, .983, and .993,

respectively indicating a reasonable fit for the data as shown in Table 3.

INSERT FIGURE 3 HERE

Model 3 (See Figure 4). The construct of representation of a variety of

relationships was assessed using the SEM model. Similar to Model 2, the RMSEA was a

.078 indicating a moderate fit in terms of degrees of freedom. However, the CFI, TLI,

and NFI all indicated a reasonable fit for the model as shown in Table 3.

INSERT FIGURE 4 HERE

Model 4 (See Figure 5). Presented a case for concern. The number of measured

variables, all single items, provided rather dubious results (See Table 3). One concern

could be the 2 degrees of freedom lends itself to a just identified model. Future attempts

at providing evidence of this theory should include a minimum of four composite

variables.

INSERT FIGURE 5 HERE

Discussion

The development of understanding of specific mathematics topics such as graphic

representation, as implemented by standards-based materials, takes place over a two to

three-year time span. An essential part of developing understanding is to build on

14
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students' prior knowledge. If that construction of knowledge is to be successful, it is

essential to know the structure of the knowledge and how it relates to the target learning

goal as stated in a mathematics standard or benchmark. The results of this study provide

a first prototype for the type of assessment alignment and data analysis that can be used

to develop models for students' knowledge construction.

The first step in examining knowledge construction is to propose a "map" of

student learning for specific important content areas. The maps from the Atlas for

Science Literacy (AAAS, 2001) provide a helpful starting point. In testing the fit of such

a map with actual student knowledge, the ideal approach would be to construct a test that

consists of items aligned with components in the map, rather than selecting items post

hoc the way it was done in this study. Nevertheless, the results from the factor analysis

indicate that we were able to identify items from a variety of assessments that did align

with the map and that could be used to characterize student prior knowledge in specific

areas of graphic representation. Furthermore, the four components reflected by the

modified Atlas map accounted for nearly half the variance in student understanding of

graphic representation, as measured by the Texas Assessment of Academic Skills

(TAAS).

The Structural Equation Modeling (SEM) approach appears to be a promising

way to test learning maps for their fit with student knowledge construction and to

examine the complexity of this knowledge. Each of the four SEM models provided a

strong confirmation that the measures we used did indeed represent students' knowledge

of the construct that was identified.

15
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In this study, because of the small n, we were only able to test whether each of the

four individual constructs provided a reasonable representation of the map component.

We were not able to put the four components together to examine their interrelationships

and their connection to the fmal target learning goal for graphic representation. A much

larger sample size, along with combining some of the correlated measures within each

factor would be necessary for accomplishing this analysis. Our future research will

include expanding the sample so that a full SEM analysis can be conducted in order to

examine the complexities and interrelationships of prior knowledge components. We

also plan to extend the work to other important mathematical topics, including rational

number and algebraic concepts of change and relationship between two variables.
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Table 1. Summary of Regression Analysis for Variables Predicting TAAS Score (n =82)

Unstandardized Coefficients

Std. Error Beta Rs2 t Sig.

Constant 28.099 5.364 5.239 .000

VC 1 -17.335 8.612 -.449 .376 -2.103 .049

VC 2 25.837 7.494 .768 .547 3.448 .001

VC 3 2.834 2.030 .170 .382 1.397 .168

VC 4 2.392 2.603 .126 .097 .919 .362

VC 5 -5.284 2.685 -.272 -.139 -1.968 .054

VC 6 .992 1.370 .129 .263 .724 .472

VC 7 2.553 2.697 .124 .127 .947 .348

VC 8 2.321 3.174 .149 .358 .731 .468

VC 9 -.289 3.326 -.148 .214 -.688 .494

FB 4 -.489 1.781 -.032 .167 -.275 .784

SB 9 3.538 1.643 .230 .301 2.154 .036

SB 10 3.093 1.796 .199 .248 1.722 .091

SB 12 1.168 1.663 .075 .118 .702 .485

SB 20 .193 1.873 .011 -.028 .103 .918

SB 23 1.620 1.674 .104 .162 .967 .338

SB 40 1.492 2.001 .084 .197 .746 .459

SB 47 1.982 1.826 .129 .433 1.085 .283

SB 56 1.222 1.779 .076 .375 .687 .495

Note. R 2 = .465; p = .003

22
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Table 2. Factor Structure Matrix for Variables Predicting TAAS Score (n =82)

Component
Variable I II III IV h2

VETCLUB1 .007 .870 .189 -.224 .862

VETCLUB2 .045 .875 .152 -.164 .828

SB20 -.018 .557 -.009 -.127 .060

SB23 -.067 -.655 .139 -.035 .084

SB40 .201 .375 -.038 .014 -.012

SB47 .405 .526 .146 .174 .223

VETCLUB3 .035 .294 .660 .343 .075

VETCLUB4 .153 .125 .756 .046 .171

SB56 .363 .035 .412 .157 .324

VETCLUB6 .795 -.054 .146 -.208 -.087

VETCLUB7 .520 .158 .002 .280 -.070

VETCLUB8 .912 .163 .170 .09 -.158

VETCLUB9 .910 .121 .170 -.065 .042

SB4 .412 .313 -.402 .092 -.038

SB10 .538 -.138 -.045 -.184 -.039

VETCLUB5 .248 .088 -.062 .801 .056

SB9 -.015 .148 -.038 -.330 -.162

SB12 -.009 .037 .019 -.391 -.030

Trace .712 1.597 .003 -.186 2.126

% of Variance 18.1 11.8 9.8 8.3 48

Note. Principal Component Analysis with a Promax with Kaiser Normalization.
Coefficients greater than 1,331 are underlined.



www.manaraa.com

Table 3 Fit Indexes for SEM Models

Investigating Mathematical Complexity 23

Model x2 df p CFI TLI NH RMSEA

Model 1 26.726 9 .002 .978 .948 .967 .016

Model 2 16.452 9 .058 .993 .983 .984 .077

Model 3 4.646 2 .098 .985 .954 .974 .078

Model 4 .183 2 .912 1.00 1.20 .999 .005

Note. n = 140
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Graphic Display

Figure 2. SEM Model #1, Graphic Display.
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Figure 3. SEM Model #2, Read Simple Tables/Graphs.
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Figure 4. SEM Model #3, Graphs Show a Variety of Relationships.
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Appendix A
Spring Benchmark#1 (Factor I)

110 The graph shows the daiLy high temperatures in degmes Fahrenheit for I week in August_
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Appendix B
Spring Benchmark Item #23 (Factor II)
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Appendix C
Spring Benchmark #56 (Factor III)
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Appendix D
Spring Benchmark # 9 (Factor IV)
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Appendix E
Vet Club Tasks* and Sample Student Response

1. Your job is to prepare a graph to go with Jenny's article. Organize the information
from her notes into a graph that will show how many of her friends have no pets, one
pet, two pets, and so on.

VC 1. Students are able to draw a graph

VC 2. Students are able to draw graphs that contain an x and y axis

VC 3. Students are able to label each axis appropriately

VC 4. Students list "number of people" as a category

VC 5. Students are able to correctly plot values on a graph

2. What number should Jenny put in the blank?

VC 6. Students are able to interpret information on the graph and apply the information to
a real-world situation

3. Explain why the number you chose is the best number to complete the headline.

VC 7. Students are able to explain how the data is connected to the graph

VC 8. Students are able to connect their explanation to measures of central tendency

VC 9. Students are able to refer to and specifically use a measure of central tendency

*Each task is scored 0 or 1.

3 3
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2. What number should Jenny put in the Um*? OOP
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